organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Shan Zhou, Ya-Qing Feng,* Bo Gao, Da-Xin Shi and Xiao-Fang Li

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: sdxmailbox@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.040 wR factor = 0.105 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,5,6,7-Tetrachloro-2-(1-naphthyl)isoindole-1,3-dione acetone solvate

The phthalimide and naphthalene moieties of the title compound, $C_{18}H_7Cl_4NO_2\cdot C_3H_6O$, are oriented almost perpendicular to each other. The crystal structure is stabilized by weak π - π , C-H··· π and van der Waals interactions.

Comment

N-Phthaloyl derivatization is one of the most frequently used methods of protection in synthesis involving compounds with primary amino groups (Falck *et al.*, 1995). Phthalimides have also served as starting materials and intermediates for the syntheses of alkaloids (Couture *et al.*, 1998) and pharmacophores (Couture *et al.*, 1997). They have cytotoxicity (Hall *et al.*, 1995) and anti-HIV activity (van Derpoorten *et al.*, 1997). In this paper, we report the structure of the title compound, (I).

The molecular structure of (I) is illustrated in Fig. 1. The isoindole moiety is planar, with a maximum deviation of 0.038 (2) Å for N1, and the naphthalene ring system is planar within ± 0.012 (3) Å. The dihedral angle between these two planes $[84.2 (1)^{\circ}]$ shows that they are orthogonal. The bond lengths and angles in the phthalimide moiety are comparable to those reported for phthalimide (Ng, 1992). The C-Cl bond lengths are in the range 1.713 (2)-1.716 (2) Å and are in agreement with the values reported in the literature (Busetti et al., 1980). In the solid state, the naphthalene ring system of the inversion-related (x, 1 - y, -z) molecules are stacked with partial overlap, such that the centroids of the benzene ring (C9-C13/C18) and its inversion equivalent are separated by 3.693 (2) Å. The crystal structure is further stabilized by weak $C-H \cdot \cdot \pi$ interactions (Table 2) involving the solvent molecule, $Cl \cdots O$ [Cl2 $\cdots O3 = 3.152$ (4) Å and $Cl4 \cdots O1(x - 1, x)$ y - 1, z) = 3.250 (2) Å] short contacts and van der Waals forces (Fig. 2). In Table 2, Cg1, Cg2 and Cg3 denote the centroids of the benzene rings A (C2-C7), B (C9-C13/C18) and C (C13–C18), respectively.

Experimental

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved A mixture of tetrachlorophthalic anhydride (10 mmol) and 1-naphthylamine (10 mmol) were refluxed in acetic acid (40 ml) until the

disappearance of the starting materials as evidenced by thin-layer chromatography. After the reaction was complete, the yellow precipitate was filtered off and washed with a minimum amount of water to give the title compound (I). M.p. 551–552 K; IR (KBr): 1719.3 cm⁻¹ (C=O); ¹H NMR (CDCl₃, p.p.m.): 6.55–7.66 (*m*, 7H); 20 mg of (I) was dissolved in 15 ml of an acetone–ether mixed solvent and the solution was kept at room temperature for 10 d to give colorless single crystals of (I) by slow evaporation.

Z = 2

 $D_x = 1.535 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 899 reflections $\theta = 2.5-26.2^{\circ}$

 $\mu = 0.61 \text{ mm}^{-1}$

T = 293 (2) K Plate, colorless $0.40 \times 0.35 \times 0.10$ mm

 $\begin{aligned} R_{\text{int}} &= 0.017\\ \theta_{\text{max}} &= 25.0^{\circ}\\ h &= -9 \rightarrow 8\\ k &= -10 \rightarrow 10\\ l &= -19 \rightarrow 10 \end{aligned}$

3567 independent reflections 2748 reflections with $I > 2\sigma(I)$

Crystal data

$C_{18}H_7Cl_4NO_2 \cdot C_3H_6O$
$M_r = 469.12$
Triclinic, P1
a = 7.706 (3) Å
b = 9.007 (3) Å
c = 16.213 (6) Å
$\alpha = 94.985~(6)^{\circ}$
$\beta = 91.165 \ (6)^{\circ}$
$\gamma = 114.879 (5)^{\circ}$
V = 1015.0 (6) Å ³

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.784, \ T_{\max} = 0.941$
4239 measured reflections

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.040$ $w = 1/[\sigma^2(F_o^2) + (0.084P)^2]$ $wR(F^2) = 0.105$ where $P = (F_o^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{max} < 0.001$ 3567 reflections $\Delta\rho_{max} = 0.24 \text{ e } \text{ Å}^{-3}$ 264 parameters $\Delta\rho_{min} = -0.33 \text{ e } \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cl1-C3	1.716 (3)	N1-C1	1.394 (3)
Cl2-C4	1.715 (2)	N1-C8	1.396 (3)
Cl3-C5	1.713 (2)	N1-C9	1.441 (3)
Cl4-C6	1.715 (3)	O3-C20	1.206 (4)
O1-C1	1.190 (3)	C19-C20	1.474 (5)
O2-C8	1.192 (3)	C20-C21	1.478 (5)
C1-N1-C8	112.9 (2)	C3-C2-C1	129.8 (2)
C1-N1-C9	122.8 (2)	C6-C7-C8	130.4 (2)
C8-N1-C9	124.2 (2)	O2-C8-N1	125.5 (2)
O1-C1-N1	125.6 (2)	O2-C8-C7	129.4 (2)
O1-C1-C2	129.5 (2)		
C1-N1-C9-C10	81.4 (3)	C1-N1-C9-C18	-98.4 (3)
C8-N1-C9-C10	-94.8 (3)	C8-N1-C9-C18	85.5 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C19-H19 $A \cdots Cg1_{i}^{i}$	0.96	3.21	4.101 (4)	156
$C21 - H21B \cdots Cg2^{n}$ $C21 - H21B \cdots Cg3^{ii}$	0.96 0.96	3.12 3.05	3.831 (5) 3.913 (6)	132 151

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z.

H atoms were positioned geometrically and were treated as riding atoms on the parent C atoms with aromatic C-H = 0.93 Å and

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids.

Figure 2 The molecular packing of (I), viewed down the *a* axis.

methyl C-H = 0.96 Å. The $U_{iso}(H)$ values were set equal to $1.2U_{eq}$ of the carrier atom for the aromatic H atoms and at $1.5U_{eq}$ for the methyl H atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). *SMART, SAINT* and *SHELXTL*. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Busetti, V., Valle, G., Zanotti, G. & Galiazzo, G. (1980). Acta Cryst. B36, 894– 897.
- Couture, A., Drniau, E. & Grandclaudon, P. (1998). J. Org. Chem. Soc. 63, 3128–3132.
- Couture, A., Drniau, E., Woisel, P. & Grandclaudon, P. (1997). Synthesis, 63, 1469–1445.
- Derpoorten, K. van, Balzarini, J., De Clercq, E. & Poupaert, J. H. (1997). Biomed. Pharmcother. 51, 464–468.
- Falck, J. R., Bhatt, R. K. & Ye, J. (1995). J. Am. Chem. Soc. 117, 5973-5982.
- Hall, I. H., Wong, O. T. & Scovill, J. P. (1995). *Biomed. Pharmcother.* **49**, 251–258.
- Ng, S. W. (1992). Acta Cryst. C48, 1694-1695.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.