Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li-Shan Zhou, Ya-Qing Feng,*
 Bo Gao, Da-Xin Shi and Xiao-Fang Li

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
sdxmailbox@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.105$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4,5,6,7-Tetrachloro-2-(1-naphthyl)-isoindole-1,3-dione acetone solvate

The phthalimide and naphthalene moieties of the title compound, $\mathrm{C}_{18} \mathrm{H}_{7} \mathrm{Cl}_{4} \mathrm{NO}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, are oriented almost perpendicular to each other. The crystal structure is stabilized by weak $\pi-\pi, \mathrm{C}-\mathrm{H} \cdots \pi$ and van der Waals interactions.

Comment

N-Phthaloyl derivatization is one of the most frequently used methods of protection in synthesis involving compounds with primary amino groups (Falck et al., 1995). Phthalimides have also served as starting materials and intermediates for the syntheses of alkaloids (Couture et al., 1998) and pharmacophores (Couture et al., 1997). They have cytotoxicity (Hall et al., 1995) and anti-HIV activity (van Derpoorten et al., 1997). In this paper, we report the structure of the title compound, (I).

(I)

The molecular structure of (I) is illustrated in Fig. 1. The isoindole moiety is planar, with a maximum deviation of 0.038 (2) \AA for N1, and the naphthalene ring system is planar within ± 0.012 (3) \AA. The dihedral angle between these two planes [84.2 (1) ${ }^{\circ}$] shows that they are orthogonal. The bond lengths and angles in the phthalimide moiety are comparable to those reported for phthalimide $(\mathrm{Ng}, 1992)$. The $\mathrm{C}-\mathrm{Cl}$ bond lengths are in the range 1.713 (2)-1.716 (2) \AA and are in agreement with the values reported in the literature (Busetti et al., 1980). In the solid state, the naphthalene ring system of the inversion-related $(x, 1-y,-z)$ molecules are stacked with partial overlap, such that the centroids of the benzene ring (C9-C13/C18) and its inversion equivalent are separated by 3.693 (2) A. The crystal structure is further stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) involving the solvent molecule, $\mathrm{Cl} \cdots \mathrm{O}[\mathrm{Cl} 2 \cdots \mathrm{O} 3=3.152(4) \AA$ and $\mathrm{Cl} 4 \cdots \mathrm{O} 1(x-1$, $y-1, z)=3.250(2) \AA$] short contacts and van der Waals forces (Fig. 2). In Table 2, Cg1, Cg2 and Cg3 denote the centroids of the benzene rings $A(\mathrm{C} 2-\mathrm{C} 7), B(\mathrm{C} 9-\mathrm{C} 13 / \mathrm{C} 18)$ and C (C13-C18), respectively.

Experimental

A mixture of tetrachlorophthalic anhydride (10 mmol) and 1-naphthylamine (10 mmol) were refluxed in acetic acid (40 ml) until the

Received 19 June 2003
Accepted 24 June 2003 Online 30 June 2003
disappearance of the starting materials as evidenced by thin-layer chromatography. After the reaction was complete, the yellow precipitate was filtered off and washed with a minimum amount of water to give the title compound (I). M.p. $551-552$ K; IR (KBr): $1719.3 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): 6.55-7.66 ($\mathrm{m}, 7 \mathrm{H}$); 20 mg of (I) was dissolved in 15 ml of an acetone-ether mixed solvent and the solution was kept at room temperature for 10 d to give colorless single crystals of (I) by slow evaporation.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{7} \mathrm{Cl}_{4} \mathrm{NO}_{2} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=469.12 \overline{1}$
Triclinic., $2 \overline{1}$
$a=7.706(3) \AA$
$b=9.007(3) \AA \AA$
$c=16.213(6) \AA$
$\alpha=94.985(6)^{\circ}$
$\beta=91.165(6)^{\circ}$
$\gamma=114.879(5){ }^{\circ}$
$V=1015.0(6) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.535 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 899 \\
& \text { reflections } \\
& \theta=2.5-26.2^{\circ} \\
& \mu=0.61 \mathrm{~mm}^{-1} \\
& T=293(2 \mathrm{~K} \\
& \text { Plate, colorless } \\
& 0.40 \times 0.35 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.784, T_{\text {max }}=0.941$
4239 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.105$
$S=1.04$
3567 reflections
264 parameters

3567 independent reflections
2748 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-19 \rightarrow 10$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 3$	$1.716(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.394(3)$
$\mathrm{Cl} 2-\mathrm{C} 4$	$1.715(2)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.396(3)$
$\mathrm{Cl} 3-\mathrm{C} 5$	$1.713(2)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.441(3)$
$\mathrm{Cl} 4-\mathrm{C} 6$	$1.715(3)$	$\mathrm{O} 3-\mathrm{C} 20$	$1.206(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.190(3)$	$\mathrm{C} 19-\mathrm{C} 20$	$1.474(5)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.192(3)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.478(5)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$112.9(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$129.8(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$122.8(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$130.4(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$124.2(2)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{N} 1$	$125.5(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$125.6(2)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$129.4(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$129.5(2)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$81.4(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 18$	$-98.4(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$-94.8(3)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 18$	$85.5(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 A \cdots C g 1^{\mathrm{i}}$	0.96	3.21	$4.101(4)$	156
$\mathrm{C} 21-\mathrm{H} 21 B \cdots C 2^{\text {ii }}$	0.96	3.12	$3.831(5)$	132
$\mathrm{C} 21-\mathrm{H} 21 B \cdots \mathrm{Cg}^{\text {ii }}$	0.96	3.05	$3.913(6)$	151

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 2-y, 1-z$.
H atoms were positioned geometrically and were treated as riding atoms on the parent C atoms with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids.

Figure 2
The molecular packing of (I), viewed down the a axis.
methyl C $-\mathrm{H}=0.96 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ of the carrier atom for the aromatic H atoms and at $1.5 U_{\text {eq }}$ for the methyl H atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Busetti, V., Valle, G., Zanotti, G. \& Galiazzo, G. (1980). Acta Cryst. B36, $894-$ 897.

Couture, A., Drniau, E. \& Grandclaudon, P. (1998). J. Org. Chem. Soc. 63, 3128-3132.
Couture, A., Drniau, E., Woisel, P. \& Grandclaudon, P. (1997). Synthesis, 63, 1469-1445.
Derpoorten, K. van, Balzarini, J., De Clercq, E. \& Poupaert, J. H. (1997). Biomed. Pharmcother. 51, 464-468.
Falck, J. R., Bhatt, R. K. \& Ye, J. (1995). J. Am. Chem. Soc. 117, 5973-5982.
Hall, I. H., Wong, O. T. \& Scovill, J. P. (1995). Biomed. Pharmcother. 49, 251258.

Ng, S. W. (1992). Acta Cryst. C48, 1694-1695.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

